34 research outputs found

    Chromium Modified Crystallization of Silicon Thin Films Crystallized by Flash Lamp Annealing

    Get PDF
    Flash lamp annealing (FLA) is a method of quickly crystallizing large areas of amorphous silicon, which is a promising alternative to existing low-throughput laser annealing in the fabrication of low temperature polycrystalline silicon for thin film transistors in display applications [1]. However, FLA tends to promote dewet- ting of silicon and randomized void formation during melt-phase crystallization [2]. Chromium underlayers have been successfully used [3] to promote silicon adhesion in thicker films, but there are many potential interactions between Cr and Si, such as the formation of silicides and generation of electrical trap states, that may inhibit future transistor performance. The mechanism and effects of these interactions are not yet understood. This work investigates the efficacy of chromium adhesion layers in silicon crystallization by FLA. Various thicknesses and configurations of amorphous silicon, thin chromium, and silicon dioxide barriers were deposited on glass and subjected to FLA. The resulting material was analyzed with electron and atomic-probe microscopy and found to contain a unique repeated pattern of voids, trenches, and SEM-bright spots at the nanometer scale. Energy-dispersive X-ray spectroscopy confirmed the distribution of chromium in crystallized films to be discrete Cr-rich agglomerations 50-70 nm in diameter, with little metallic contamination outside of these isolated areas

    SOST Inhibits Prostate Cancer Invasion.

    Get PDF
    Inhibitors of Wnt signaling have been shown to be involved in prostate cancer (PC) metastasis; however the role of Sclerostin (Sost) has not yet been explored. Here we show that elevated Wnt signaling derived from Sost deficient osteoblasts promotes PC invasion, while rhSOST has an inhibitory effect. In contrast, rhDKK1 promotes PC elongation and filopodia formation, morphological changes characteristic of an invasive phenotype. Furthermore, rhDKK1 was found to activate canonical Wnt signaling in PC3 cells, suggesting that SOST and DKK1 have opposing roles on Wnt signaling in this context. Gene expression analysis of PC3 cells co-cultured with OBs exhibiting varying amounts of Wnt signaling identified CRIM1 as one of the transcripts upregulated under highly invasive conditions. We found CRIM1 overexpression to also promote cell-invasion. These findings suggest that bone-derived Wnt signaling may enhance PC tropism by promoting CRIM1 expression and facilitating cancer cell invasion and adhesion to bone. We concluded that SOST and DKK1 have opposing effects on PC3 cell invasion and that bone-derived Wnt signaling positively contributes to the invasive phenotypes of PC3 cells by activating CRIM1 expression and facilitating PC-OB physical interaction. As such, we investigated the effects of high concentrations of SOST in vivo. We found that PC3-cells overexpressing SOST injected via the tail vein in NSG mice did not readily metastasize, and those injected intrafemorally had significantly reduced osteolysis, suggesting that targeting the molecular bone environment may influence bone metastatic prognosis in clinical settings

    Conditional Deletion of Murine Fgf23: Interruption of the Normal Skeletal Responses to Phosphate Challenge and Rescue of Genetic Hypophosphatemia

    Get PDF
    The transgenic and knockout (KO) animals involving Fgf23 have been highly informative in defining novel aspects of mineral metabolism, but are limited by shortened lifespan, inability of spatial/temporal FGF23 control, and infertility of the global KO. To more finely test the role of systemic and genetic influences in FGF23 production, a mouse was developed that carried a floxed ("f")-Fgf23 allele (exon 2 floxed) which demonstrated in vivo recombination when bred to global-Cre transgenic mice (eIIa-cre). Mice homozygous for the recombined allele ("Δ") had undetectable serum intact FGF23, elevated serum phosphate (p < 0.05), and increased kidney Cyp27b1 mRNA (p < 0.05), similar to global Fgf23-KO mice. To isolate cellular FGF23 responses during phosphate challenge, Fgf23(Δ/f) mice were mated with early osteoblast type Iα1 collagen 2.3-kb promoter-cre mice (Col2.3-cre) and the late osteoblast/early osteocyte Dentin matrix protein-1-cre (Dmp1-cre). Fgf23(Δ/f) /Col2.3-cre(+) and Fgf23(Δ/f) /Dmp1-cre(+) exhibited reduced baseline serum intact FGF23 versus controls. After challenge with high-phosphate diet Cre(-) mice had 2.1-fold to 2.5-fold increased serum FGF23 (p < 0.01), but Col2.3-cre(+) mice had no significant increase, and Dmp1-cre(+) mice had only a 37% increase (p < 0.01) despite prevailing hyperphosphatemia in both models. The Fgf23(Δ/f) /Col2.3-cre was bred onto the Hyp (murine X-linked hypophosphatemia [XLH] model) genetic background to test the contribution of osteoblasts and osteocytes to elevated FGF23 and Hyp disease phenotypes. Whereas Hyp mice maintained inappropriately elevated FGF23 considering their marked hypophosphatemia, Hyp/Fgf23(Δ/f) /Col2.3-cre(+) mice had serum FGF23 <4% of Hyp (p < 0.01), and this targeted restriction normalized serum phosphorus and ricketic bone disease. In summary, deleting FGF23 within early osteoblasts and osteocytes demonstrated that both cell types contribute to baseline circulating FGF23 concentrations, and that targeting osteoblasts/osteocytes for FGF23 production can modify systemic responses to changes in serum phosphate concentrations and rescue the Hyp genetic syndrome

    Increased FGF23 protects against detrimental cardio-renal consequences during elevated blood phosphate in CKD

    Get PDF
    The phosphaturic hormone FGF23 is elevated in chronic kidney disease (CKD). The risk of premature death is substantially higher in the CKD patient population, with cardiovascular disease (CVD) as the leading mortality cause at all stages of CKD. Elevated FGF23 in CKD has been associated with increased odds for all-cause mortality; however, whether FGF23 is associated with positive adaptation in CKD is unknown. To test the role of FGF23 in CKD phenotypes, a late osteoblast/osteocyte conditional flox-Fgf23 mouse (Fgf23fl/fl/Dmp1-Cre+/-) was placed on an adenine-containing diet to induce CKD. Serum analysis showed casein-fed Cre+ mice had significantly higher serum phosphate and blood urea nitrogen (BUN) versus casein diet and Cre- genotype controls. Adenine significantly induced serum intact FGF23 in the Cre- mice over casein-fed mice, whereas Cre+ mice on adenine had 90% reduction in serum intact FGF23 and C-terminal FGF23 as well as bone Fgf23 mRNA. Parathyroid hormone was significantly elevated in mice fed adenine diet regardless of genotype, which significantly enhanced midshaft cortical porosity. Echocardiographs of the adenine-fed Cre+ hearts revealed profound aortic calcification and cardiac hypertrophy versus diet and genotype controls. Thus, these studies demonstrate that increased bone FGF23, although associated with poor outcomes in CKD, is necessary to protect against the cardio-renal consequences of elevated tissue phosphate

    Quasi-three-level Model Applied to Measured Spectra of Nonlinear Absorption and Refraction in Organic Molecules

    Get PDF
    Materials with a large nonlinear refractive index (2) and relatively small linear and nonlinear absorption losses, namely, two-photon absorption (2PA, of coefficient 2), have long been sought after for applications such as all-optical switching (AOS). Here we experimentally determine the linear and 2PA properties of several organic molecules, which we approximate as centrosymmetric, and use a simplified essential-state model (quasi-three-level model) to predict the dispersion of 2. We then compare these predictions with experimental measurements of 2 and find good agreement. Here “quasi”-three-level means using a single one-photon allowed intermediate state and multiple (here two) two-photon allowed states. This also allows predictions of the figure-of-merit (FOM), defined as the ratio of nonlinear refractive phase shift to the 2PA fractional loss, that determines the viability for such molecules to be used in device applications. The model predicts that the optimized wavelength range for a large FOM lies near the short wavelength linear absorption edge for cyanine-like dyes where the magnitude of 2 is quite large. However, 2PA bands lying close to the linear absorption edge in certain classes of molecules can greatly reduce this FOM. We identify two molecules having a large FOM for AOS. We note that the FOM is often defined as the ratio of real to imaginary parts of the third-order susceptibility ((3)) with multiple processes leading to both components. As explained later in this paper, such definitions require care to only include the 2PA contribution to the imaginary part of (3) in regions of transparency.Abstract © 2016 Optical Society of Americ

    Case of giant vulvar condyloma acuminata successfully treated with imiquimod 3.75% cream: A case report

    No full text
    Condyloma acuminata, also known as anogenital warts, represent a cutaneous infection caused by sexual transmission of the human papilloma virus. We present a case of overwhelming condyloma acuminata that was treated successfully without surgery using only topical imiquimod 3.75% cream. The patient, a 66-year-old female, was referred to Dermatology for large protruding verrucous plaques that covered the entire surface of her external vulva, perineum and perianal area. These lesions developed after being treated for genital warts with cantharidin. Four other cases treated with imiquimod were identified in the literature but either required surgery, higher doses or longer duration of treatment or involved pediatric populations. In patients who are not amenable to surgery, topical imiquimod may be a novel standalone or an adjunctive therapy for giant condyloma acuminata

    IL-17A Increases Doxorubicin Efficacy in Triple Negative Breast Cancer

    No full text
    Due to lack of targetable receptors and intertumoral heterogeneity, triple negative breast cancer (TNBC) remains particularly difficult to treat. Doxorubicin (DOX) is typically used as nonselective neoadjuvant chemotherapy, but the diversity of treatment efficacy remains unclear. Comparable to variability in clinical response, an experimental model of TNBC using a 4T1 syngeneic mouse model was found to elicit a differential response to a seven-day treatment regimen of DOX. Single-cell RNA sequencing identified an increase in T cells in tumors that responded to DOX treatment compared to tumors that continued to grow uninhibited. Additionally, compared to resistant tumors, DOX sensitive tumors contained significantly more CD4 T helper cells (339%), γδ T cells (727%), Naïve T cells (278%), and activated CD8 T cells (130%). Furthermore, transcriptional profiles of tumor infiltrated T cells in DOX responsive tumors revealed decreased exhaustion, increased chemokine/cytokine expression, and increased activation and cytotoxic activity. γδ T cell derived IL-17A was identified to be highly abundant in the sensitive tumor microenvironment. IL-17A was also found to directly increase sensitivity of TNBC cells in combination with DOX treatment. In TNBC tumors sensitive to DOX, increased IL-17A levels lead to a direct effect on cancer cell responsiveness and chronic stimulation of tumor infiltrated T cells leading to improved chemotherapeutic efficacy. IL-17A's role as a chemosensitive cytokine in TNBC may offer new opportunities for treating chemoresistant breast tumors and other cancer types

    Comparative Molecular Analysis of Cancer Behavior Cultured In Vitro, In Vivo, and Ex Vivo

    No full text
    Current pre-clinical models of cancer fail to recapitulate the cancer cell behavior in primary tumors primarily because of the lack of a deeper understanding of the effects that the microenvironment has on cancer cell phenotype. Transcriptomic profiling of 4T1 murine mammary carcinoma cells from 2D and 3D cultures, subcutaneous or orthotopic allografts (from immunocompetent or immunodeficient mice), as well as ex vivo tumoroids, revealed differences in molecular signatures including altered expression of genes involved in cell cycle progression, cell signaling and extracellular matrix remodeling. The 3D culture platforms had more in vivo-like transcriptional profiles than 2D cultures. In vivo tumors had more cells undergoing epithelial-to-mesenchymal transition (EMT) while in vitro cultures had cells residing primarily in an epithelial or mesenchymal state. Ex vivo tumoroids incorporated aspects of in vivo and in vitro culturing, retaining higher abundance of cells undergoing EMT while shifting cancer cell fate towards a more mesenchymal state. Cellular heterogeneity surveyed by scRNA-seq revealed that ex vivo tumoroids, while rapidly expanding cancer and fibroblast populations, lose a significant proportion of immune components. This study emphasizes the need to improve in vitro culture systems and preserve syngeneic-like tumor composition by maintaining similar EMT heterogeneity as well as inclusion of stromal subpopulations
    corecore